A tactile sensor is a small device that responds to stimuli and measures the information from interacting with its environment. These sensors are modeled to respond to physical environmental changes and can detect mechanical stimulation, temperature, and pain. They find their use in robotics, security systems, and computer hardware. A touchscreen device is one of the most common examples of tactile sensors.
There are different types of tactile sensors:
- Optical
- Capacitive
- Elastoresistive
- Piezoresistive
- Piezoelectric
Since the modification of sensors has come a long way, it is primarily used in robotics to control mechanical arms, aircraft, and other fields.
Uses of tactile sensors
Although there are innumerable applications of these sensors in different fields like medicine, robotics, aeronautics, etc., in this article, we will talk about their uses in designing robots.
Robots are machines designed to handle tasks involving precision, dexterity, or interaction with particular objects. A sensor can help a robot provide the necessary functionality, equivalent to human tactile ability. One of the main advantages of tactile sensors in robots involves complementing visual systems and providing additional information when the robot begins to get hold of an object. For example, since the mechanical properties of an object at grip cannot be determined visually, tactile sensors were introduced to measure its coefficient of friction, thermal conductivity, stiffness, center of mass, thermal conductivity, and other factors.
There are several classes of tactile sensors in robots, each performing different types of tasks advocated for monitoring and manipulation.
Optical–based tactile sensors
In recent years, several tactical sensors have been introduced in the market, which provide camera-like technologies to produce data with high resolution. For example, Samsung uses see through your skin sensor (STS), which uses a semi-transparent gel to provide precision imaging with high resolution.
Pressure array sensors
The tactle, an element of a tactical sensor, can detect regular forces. This means their interaction provides high-resolution images when the object comes in close contact with the sensors in a robot. With its spatial resolution and sensitivity to forcing, wiring and signal routing are also essential factors for system integration. Hence, pressure sensors are introduced into the robots, which helps manufacture R&D and can further be used in robotics.
Conclusion
Future robots are predicted to work closely with humans in the real world and are also predicted to be more efficient than humans in certain filed. The tactical data gathered by them using tactile sensors in them help in effectively managing robotic tasks. The right integration of a tactical sensor on a robot body is a prerequisite that helps in better utilization of the determined data. Due to their contribution and benefits, tactical sensors are considered one of the practical components of robotic platforms.